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75252 Paris Cédex 05, France
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Abstract
In the present paper we overview our recent results on intrinsic frictional
properties of adsorbed monolayers, composed of mobile hard-core particles
undergoing continuous exchanges with a vapour phase. Within the framework
of a dynamical master equation approach, describing the time evolution of
the system, we determine in the most general form the terminal velocity of
some biased impure molecule—the tracer particle (TP), constrained to move
inside the adsorbed monolayer, probing its frictional properties—and define the
frictional forces as well as the particle-density distribution in the monolayer.
Results for one-dimensional solid substrates, appropriate to adsorption on
polymer chains, are compared against the Monte Carlo simulation data, which
confirm our analytical predictions.

1. Introduction

In the present paper we overview our recent results on intrinsic friction of monolayers emerging
on solids exposed to a vapour phase [1–4]. Such layers are involved in various technological
and materials processing operations, including, for instance, coating, gluing and lubrication.
Knowledge of their intrinsic frictional properties is important for a conceptual understanding
of different transport processes taking place within molecular films, film stability, as well as
the spreading of ultrathin liquid films on solid surfaces [5,6], spontaneous or forced dewetting
of monolayers [7–10] and island formation on solid surfaces [11].

Since the early works of Langmuir, much effort has been invested in the analysis of the
equilibrium properties of adsorbed films [12–16]. Here, significant analytical results have
been obtained predicting different phase transitions and ordering phenomena, which agree
well with the available experimental data. Also, some approximate results have been obtained
for both the dynamics of an isolated adatom on a corrugated surface and collective diffusion,
describing spreading of the macroscopic density fluctuations in interacting adsorbates that are
in contact with the vapour [17–20].

Another important aspect of the dynamical behaviour concerns tracer diffusion in
adsorbates, which is observed experimentally in STM or field-ion measurements and provides
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useful information about an adsorbate’s viscosity or intrinsic friction. This problem is not only
a challenging question in its own right due to emerging non-trivial, essentially cooperative
behaviour, but is also crucial for the understanding of various dynamical processes taking
place on solid surfaces. However, most of the available theoretical studies of tracer diffusion
in adsorbed layers (see, e.g., references [21–29]) exclude the possibility of particle exchanges
with the vapour.

Here we focus on this important issue and provide a theoretical description of the properties
of tracer diffusion in adsorbed monolayers in contact with a vapour phase—a reservoir of
particles. More specifically, the system that we consider consists of (a) a solid substrate,
which is modelled in the usual fashion as a regular lattice of adsorption sites; (b) a monolayer
of adsorbed, mobile hard-core particles in contact with a vapour; and (c) a single hard-core
tracer particle (TP). We suppose that the monolayer particles move randomly through the
lattice by performing symmetric hopping motions between the neighbouring lattice sites—
which process is constrained by mutual hard-core interactions—and may desorb from and
adsorb onto the lattice from the vapour with some prescribed rates dependent on the vapour
pressure, temperature and the interactions with the solid substrate. In contrast, the tracer
particle is constrained to move through the lattice only (i.e. it cannot desorb to the vapour),
and is subject to a constant external force of arbitrary magnitude E. Hence, the TP performs
a biased random walk, constrained by the hard-core interactions with the monolayer particles,
and always remains within the monolayer, probing its frictional properties.

The questions that we address here are the following. First, focusing on one- and two-
dimensional systems, we aim to determine the force–velocity relation. That is, as t → ∞, the
TP ultimately attains a constant velocityVtr(E), which depends on the magnitude of the applied
external force; the functional form of this dependence in the most general case constitutes the
primary goal of our analysis. Next, we study the form of the force–velocity relation in the
limit of a vanishingly small external bias. This allows us, in particular, to show that the
frictional force exerted on the TP by the monolayer particles is viscous, and to evaluate the
corresponding friction coefficient. Lastly, we analyse how the biased TP perturbs the particle-
density distribution in the monolayer. In fact, we proceed to show that there are stationary
density profiles around the TP as t → ∞, which mirror a remarkable cooperative behaviour.

We finally remark that our model can be viewed from a somewhat different perspective.
Namely, on the one hand, the model under study is a certain generalization of the ‘tracer
diffusion in a hard-core lattice gas’ problem (see, e.g., reference [21] for an extensive review)
to the case where the random walk performed by the TP is biased and the number of particles
in the monolayer is not explicitly conserved, due to exchanges with the reservoir. We recall
that even this, by now classic model constitutes a many-body problem for which no exact
general expression for the tracer diffusion coefficient Dtr is known. On the other hand, our
model represents a novel example of the so-called ‘dynamical percolation’ models [30–35],
invoked to describe transport processes in many situations with dynamical disorder. In this
context, the particles of the monolayer can be thought of as representing some fluctuating
environment, which hinders the motion of an impure molecule—the TP, which might be, for
example, a charge carrier. An important aspect of our model, which makes it different from the
previously proposed models of dynamic percolative environments, is that we include the hard-
core interaction between ‘environment’ particles and the tracer particle, such that the latter
may itself influence the dynamics of the environment. Lastly, we note that the model under
study can be thought of as some simplified picture of the stagnant layers emerging in liquids
that are in contact with a solid body. It is well known (see, e.g., reference [36]) that liquids
in the close vicinity of a solid interface—at distances within a few molecular diameters—
do possess completely different physical properties compared to those of the bulk phase. In
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this ‘stagnant’ region, in which an intrinsically disordered liquid phase is spanned by and
interacts with the ordering potential of the solid, the liquid’s viscosity is drastically enhanced
and transport processes (related, say, to biased diffusion of charged carriers in solutions) are
substantially hindered. Thus our model can be viewed as a two-level approximate model of
this challenging physical system, in which the reservoir mimics the bulk fluid phase with very
rapid transport, while the adsorbed monolayer represents the stagnant layer emerging on the
solid–liquid interface.

The paper is structured as follows. In section 2 we formulate our model for the case of
a two-dimensional solid substrate and introduce the basic notation. We then write down the
dynamical equations which govern the time evolution of the monolayer particles and of the
tracer, and outline the decoupling approximation used to close this system of equations. These
equations are presented for the general, d-dimensional case. Sections 3 and 4 are respectively
devoted to the presentation of the results of this general approach for one-dimensional
substrates—which situation is appropriate to adsorption on polymer chains [37,38]—and also
for two-dimensional solid substrates. Finally, we conclude in section 5 with a brief summary
and a discussion of our results.

2. The model and basic equations

2.1. The model

Consider a two-dimensional solid surface with some concentration of adsorption sites, which
is brought in contact with a reservoir containing identical, electrically neutral particles—a
vapour phase (figure 1), maintained at a constant pressure. For simplicity of exposition, we
assume here that adsorption sites form a regular square lattice of spacing σ . We suppose next
that the reservoir particles may adsorb onto any vacant adsorption site at a fixed rate f/τ ∗,
which rate depends on the vapour pressure and the energy gain due to the adsorption event.
Further on, the adsorbed particles may move randomly through the lattice by hopping at a rate
1/4τ ∗ to any of four neighbouring adsorption sites, which process is constrained by hard-core

Figure 1. An adsorbed monolayer in contact with a vapour. Grey spheres denote the monolayer
(vapour) particles; the smaller dark sphere stands for the driven tracer particle.
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exclusion preventing multiple occupancy of any of the sites. Lastly, the adsorbed particles
may desorb from the lattice back to the reservoir at the rate g/τ ∗, which is dependent on the
barrier against desorption. Both f and g are site and environment independent.

Note that such a model represents, of course, a certain idealization. In ‘real-world’
systems, the adsorbed particles experience two types of interaction: the solid–particle (SP)
interactions, i.e. interactions with the atoms of the host solid, and the particle–particle (PP)
interactions, i.e. mutual interactions with each other. Now, both the SP and the PP interactions
are characterized by a strong repulsion at short distances, and are attractive at longer distances.
The SP repulsion keeps the adsorbed particles some distance apart from the solid, while
the SP attraction favours adsorption and hinders particle desorption as well as migration
along the solid surface. In this regard, our model corresponds to the regime of the so-called
intermediate localized adsorption [15, 16]: the particles forming an adsorbed monolayer are
neither completely fixed in the potential wells created by the SP interactions, nor completely
mobile. This means that the potential wells are rather deep with respect to particle desorption
(the desorption barrier Ud � kT ), such that the adsorbate forms a submonolayer, but
nonetheless, have a much lower energy barrier Vl against the lateral movement across the
surface, Ud � Vl > kT . In this regime, each adsorbed particle spends a considerable part
of its time at the bottom of a potential well and jumps sometimes, solely due to the thermal
activation, from one potential minimum to another in its neighbourhood; after the jump is
performed, the particle dissipates all of its energy to the host solid. Thus, on a macroscopic
timescale the particles do not possess any velocity. The time τ ∗ separating two successive
jump events is just the typical time that a given particle spends in a given well vibrating around
its minimum; τ ∗ is related to the temperature, the barrier for lateral motion and the frequency
of the solid atoms’ vibrations by the Arrhenius formula.

We emphasize that such random motion is essentially different from the standard
hydrodynamic picture of particle random motion in the two-dimensional ‘bulk’ liquid phase,
e.g. in free-standing liquid films, in which case there is a velocity distribution and spatially
random motion results from the PP scattering. In this case, the dynamics may be only
approximately considered as an activated hopping of particles, confined to some effective cells
by the potential field of their neighbours, through a lattice-like structure of such cells (see,
e.g., references [39,40]). In contrast to the dynamical model to be studied here, standard two-
dimensional hydrodynamics presumes that the particles do not interact with the underlying
solid. In real systems, of course, both the particle–particle scattering and the scattering by
the potential wells due to the interactions with the host solid (as well as the corresponding
dissipation channels) are important [18, 41]. In particular, it has been shown that addition
of a dissipation to the host solid removes the infrared divergencies in the dynamic density
correlation functions and thus makes the transport coefficients finite [42, 43]. On the other
hand, homogeneous adsorbed monolayers may only exist in systems in which the attractive
part of the PP interaction potential is essentially weaker than that describing interactions with
the solid; otherwise, such monolayers become unstable and dewet spontaneously from the
solid surface. In fact, for stable homogeneous monolayers, the PP interactions are at least ten
times weaker than the interactions with the solid atoms [16].

Consequently, the standard hydrodynamic picture of particle dynamics is inappropriate
under the above-defined physical conditions. On the contrary, any adsorbed particle moves due
to random hopping events, activated by chaotic vibrations of the solid atoms, through the local
minima of an array of potential wells, created due to the interactions with the solid [15,16]. As
we have already remarked, in the physical conditions under which such a dynamics occurs, the
PP interactions are much weaker than the SP interactions and hence do not significantly perturb
the regular array of potential wells due to the SP interactions. In our model, we completely
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discard the attractive part of the PP interaction potential and take into account only the repulsive
one, which is approximated by an abrupt, hard-core-type potential.

To describe the occupancy of lattice sites, we introduce a time-dependent variable η(R),
which may assume either of two values:

η(R) =
{

1 if the site R is occupied by an adsorbed particle

0 if the site R is empty.
(1)

Note that the local variable η(R) can change its value due to adsorption, desorption and
random hopping events. Note also that random hopping events conserve the total number of
adsorbed particles and, hence, also the average adsorbate density ρs(t). On the other hand,
adsorption/desorption processes change η(R) locally such that the total number of particles
in the adsorbed monolayer is not explicitly conserved. However, the mean density of the
adsorbate, ρs(t) = 〈η(R)〉, approaches as t → ∞ a constant value:

ρs = f

f + g
. (2)

This relation is well known and represents the customary Langmuir adsorption isotherm [12].
We finally remark that in the analysis of the stationary-state behaviour, we can always turn to
the conserved-particle-number limit by setting f and g equal to zero and keeping their ratio
fixed, i.e. supposing that f/g = ρs/(1−ρs). This limit will correspond to the model of biased
tracer diffusion in a hard-core lattice gas with fixed particle density ρs , and will allow us to
check our analytical predictions against some already known results [21–25, 29]. We will
furnish such a comparison at the end of the section 4.

Further on, at t = 0 we introduce at the lattice origin an extra hard-core particle, whose
motion we would like to follow; the position of this particle at time t is denoted as Rtr . Note
that the tracer particle (TP) is designed to measure the resistance offered by the monolayer
particles to the external perturbation, or, in other words, to measure the intrinsic frictional
properties of the adsorbate.

Now, we stipulate that the TP is different from the adsorbed particles in two respects: first,
it cannot desorb from the lattice and second, it is subject to some external driving force, which
favours jumps in a preferential direction. Physically, such a situation may be realized, for
instance, if only this particle is charged and the system is subject to a uniform electric field E.
We suppose here, for simplicity of exposition, that the external force E is oriented according
to the unit vector e1.

The dynamics of the biased TP is defined in the usual fashion: we suppose that the TP,
which occupies the site Rtr at time t , waits an exponentially distributed time with mean τ , and
then attempts to hop onto one of four neighbouring sites, Rtr + eν , where the eν are the four
unit vectors of the hypercubic lattice. In what follows, we adopt the notation ν = {±1,±2};
±e1 will denote the direction of the external force E. Next, the jump direction is chosen
according to the probability pν , which obeys

pν = exp

[
β

2
(E · eν)

]/∑
µ

exp

[
β

2
(E · eµ)

]
(3)

where β is the reciprocal temperature, (E · e) stands for the scalar product, the charge of the
TP is set equal to unity and the sum with the subscript µ denotes summation over all possible
orientations of the vector eµ; that is, µ = {±1,±2}.

After the jump direction is chosen, the TP attempts to hop onto the target site. The hop
is instantaneously effected if the target site is vacant at this moment of time; otherwise, i.e. if
the target site is occupied by any adsorbed particle, the jump is rejected and the TP remains at
its position.
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2.2. Evolution equations

Now, we derive the evolution equations in a general, d-dimensional case, which will allow
us to compare the behaviour emerging in one- and two-dimensional systems. We begin by
introducing some auxiliary definitions. Let η ≡ {η(R)} denote the entire set of the occupation
variables, which defines the instantaneous configuration of the adsorbed particles at the lattice
at moment t . Next, let P(Rtr , η; t) stand for the joint probability of finding at time t the
TP at the site Rtr and all adsorbed particles in the configuration η. Then, denoting as ηr,ν

a configuration obtained from η by the Kawasaki-type exchange of the occupation variables
of two neighbouring sites r and r + eν , and as η̂r a configuration obtained from the original
η by the replacement η(r) → 1 − η(r), which corresponds to the Glauber-type flip of the
occupation variable due to the adsorption/desorption events, we have that the time evolution
of the configuration probability P(Rtr , η; t) obeys the following master equation:

∂tP (Rtr , η; t) = 1

2dτ ∗

d∑
µ=1

∑
r �=Rtr−eµ,Rtr

{
P(Rtr , η

r,µ; t)− P(Rtr , η; t)
}

+
1

τ

∑
µ

pµ
{
(1 − η(Rtr ))P (Rtr − eµ, η; t)

− (1 − η(Rtr + eµ))P (Rtr , η; t)
}

+
g

τ ∗
∑

r �=Rtr

{
(1 − η(r))P (Rtr , η̂

r; t)− η(r)P (Rtr , η; t)
}

+
f

τ ∗
∑

r �=Rtr

{
η(r)P (Rtr , η̂

r; t)− (1 − η(r))P (Rtr , η; t)
}
. (4)

The mean velocity Vtr(t) of the TP can be obtained by multiplying both sides of equ-
ation (4) by (Rtr · e1) and summing over all possible configurations (Rtr , η). This results in
the following exact equation determining the TP velocity:

Vtr(t) ≡ d

dt

∑
Rtr ,η

(Rtr · e1)P (Rtr , η; t) = σ

τ

{
p1

(
1 − k(e1; t)

)−p−1
(
1 − k(e−1; t)

)}
(5)

where

k(λ; t) ≡
∑
Rtr ,η

η(Rtr + λ)P (Rtr , η; t) (6)

is the probability of having at time t an adsorbed particle at position λ, defined in the frame of
reference moving with the TP. In other words, k(λ; t) can be thought of as being the density
profile in the adsorbed monolayer as seen from the moving TP.

Equation (5) signifies that the velocity of the TP is dependent on the monolayer particle
density in the immediate vicinity of the tracer. If the monolayer is perfectly stirred, or, in other
words, if k(λ; t) = ρs everywhere (which implies immediate decoupling of Rtr and η), one
would obtain from equation (5) a trivial mean-field result:

V
(0)
tr = (p1 − p−1)(1 − ρs)

σ

τ
(7)

which states that the only effect of the medium on the TP dynamics is that its jump time τ is
merely renormalized by a factor (1−ρs)

−1, which represents the inverse concentration of voids
in the monolayer; note that then (1 − ρs)/τ defines simply the mean frequency of successful
jump events.

However, the situation appears to be more complicated and, as we proceed to show, k(λ; t)
is different from the equilibrium value ρs everywhere, except for when |λ| → ∞. This means
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that the TP strongly perturbs the particle distribution in the monolayer—it is no longer uniform
and some non-trivial stationary density profiles emerge.

Now, in order to calculate the instantaneous mean velocity of the TP we have to determine
the mean particle density at the sites neighbouring the TP, Rtr + e±1, which requires, in turn,
computation of the density profile k(λ; t) for arbitrary λ. The latter can be found from the
master equation (4) by multiplying both sides by η(Rtr ) and performing the summation over
all configurations (Rtr , η). In doing so, we find that these equations are not closed with respect
to k(λ; t), but are coupled to the third-order correlations:

T (λ, eν; t) =
∑
Rtr ,η

η(Rtr + λ)η(Rtr + eµ)P (Rtr , η; t). (8)

In turn, if we proceed further to the third-order correlations, we find that these are coupled
respectively to the fourth-order correlations. Consequently, in order to compute Vtr , one faces
the problem of solving an infinite hierarchy of coupled equations for the correlation functions.
Here we resort to the simplest non-trivial closure of the hierarchy in terms of k(λ; t), which
was first proposed in references [26] and [27], and represent T (λ, eν; t) as∑
Rtr ,η

η(Rtr + λ)η(Rtr + eµ)P (Rtr , η; t)

≈
( ∑

Rtr ,η

η(Rtr + λ)P (Rtr , η; t)
)( ∑

Rtr ,η

η(Rtr + eµ)P (Rtr , η; t)
)

= k(λ; t)k(eµ; t). (9)

Some arguments justifying such an approximation a posteriori are presented in sections 3
and 4 (see also reference [1]).

Using the approximation in equation (9), we obtain

2dτ ∗ ∂tk(λ; t) = L̃k(λ; t) + 2df (10)

which holds for all λ, except for λ = {0,±e1, e2, . . . , ed}. One the other hand, for these
special sites λ = eν with ν = {±1, 2, . . . , d} we find

2dτ ∗ ∂tk(eν; t) = (L̃ + Aν)k(eν; t) + 4f (11)

where L̃ is the operator

L̃ ≡
∑
µ

Aµ∇µ − 4(f + g). (12)

∇µ is defined by its action over test functions f (λ) by

∇µf (λ) ≡ f (λ + eµ)− f (λ) (13)

and the coefficients Aµ are the following quantities:

Aµ(t) ≡ 1 +
2dτ ∗

τ
pµ(1 − k(eµ; t)). (14)

Note that equation (11) represents, from the mathematical point of view, the boundary
conditions for the general evolution equation (10), imposed on the sites in the immediate
vicinity of the TP. Equations (10) and (11) together with equation (5) thus constitute a closed
system of equations which suffice for computation of all properties of interest.
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2.3. Stationary solution of the evolution equations

We turn to the limit t → ∞ and suppose that both the density profiles and stationary velocity
of the TP have non-trivial stationary values:

k(λ) ≡ lim
t→∞ k(λ; t) Vtr ≡ lim

t→∞Vtr(t) Aµ ≡ lim
t→∞Aµ(t). (15)

Define next the local deviations of k(λ) from the unperturbed density as

h(λ) ≡ k(λ)− ρs. (16)

Choosing that h(0) = 0, we obtain then the following fundamental system of equations:

L̃h(λ) = 0 for all λ �= {0, e±1, . . . , e±d} (17)

(L̃ + Aν)h(eν) + ρs(Aν − A−ν) = 0 for λ = {0, e±1, . . . , e±d} (18)

which determine the deviation from the unperturbed density ρs in the stationary state. Note
also that by virtue of an evident symmetry, h(eν) = h(e−ν) and Aν = A−ν for ν ∈ {2, . . . , d}.

The general approach to the solution of the coupled non-linear equations (5), (17) and
(18) has been discussed in detail in reference [4]. Here we merely note that despite the fact
that using the decoupling scheme in equation (9) we effectively close the system of equations
on the level of the pair correlations, solution of equations (17) and (18) (or, equivalently, of
equations (10) and (11)) still poses serious technical difficulties: namely, these equations are
non-linear with respect to the TP velocity, which enters the gradient term on the rhs of the
evolution equations for the pair correlation, and itself depends on the values of the monolayer
particle densities in the immediate vicinity of the TP. The solution of this system of non-linear
equations for one- and two-dimensional substrates is demonstrated in the next two sections.

3. One-dimensional adsorbed monolayer

For one-dimensional lattices, which situation is appropriate to adsorption on polymer chains
[37, 38], the general solution of equations (17) and (18) has the following form:

kn ≡ k(λ) = ρs + K± exp(−σ |n|/λ±) λ = σn n ∈ Z
∗ (19)

where the characteristic lengths λ± obey

λ± = ∓σ ln−1

[
A1 + A−1 + 2(f + g)∓

√
(A1 + A−1 + 2(f + g))2 − 4A1A−1

2A1

]
(20)

while the amplitudes K± are given respectively by

K+ = ρs
A1 − A−1

A−1 − A1 exp(−σ/λ+)
(21)

and

K− = ρs
A1 − A−1

A−1 exp(−σ/λ−)− A1
. (22)

Note that λ− > λ+ and, consequently, the local density past the TP approaches its non-
perturbed value ρs more slowly than that in front of it; this signifies that correlations between
the TP position and particle distribution are stronger past the TP. Next, K+ is always positive,
while K− < 0; this means that the density profile is a non-monotonic function of λ and is
characterized by a jammed region in front of the TP, in which the local density is higher than
ρs , and a depleted region past the TP in which the density is lower than ρs .
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Now, we are in position to obtain a system of two closed-form non-linear equations
determining implicitly the unknown parameters A1 and A−1, which will allow us to compute
the TP terminal velocity, related to A±1 through Vtr = σ(A1 − A−1)/2τ ∗. Substituting equ-
ation (19) into equation (14), we find

A1 = 1 +
p1τ

∗

τ

[
1 − ρs − ρs

A1 − A−1

A−1 exp(σ/λ′
+)− A1

]
(23)

and

A−1 = 1 +
p−1τ

∗

τ

[
1 − ρs − ρs

A1 − A−1

A−1 − A1 exp(σ/λ′−)

]
. (24)

Resolution of this system leads then to the stationary velocity of the TP (see figure 2) as
well as the density profiles (see figure 3). For arbitrary values of p, f and g, the parameters
A±1, defined by equations (23) and (24), and, consequently, the terminal velocity Vtr can be
determined only numerically (see figures 2 to 4). However, Vtr can be found analytically in
an explicit form in the limit of a vanishingly small force E, E → 0. Expanding A±1 in the
Taylor series in powers of E and retaining only terms linear in E, we find that the TP velocity
follows

Vtr ∼ ζ−1E (25)

which relation can be thought of as the analogue of the Stokes formula for driven motion
in a one-dimensional adsorbed monolayer undergoing continuous particle exchanges with
the vapour phase. Equation (25) signifies that the frictional force exerted on the TP by
the monolayer particles is viscous. The friction coefficient, i.e. the proportionality factor
in equation (25), is given explicitly by

ζ = 2τ

βσ 2(1 − ρs)

[
1 +

ρsτ
∗

τ(f + g)

2

1 +
√

1 + 2(1 + τ ∗(1 − ρs)/τ)/(f + g)

]
. (26)

0.0 0.5 1.0
f

0.00

0.05

0.10

0.15

0.20

Vtr

Figure 2. Terminal velocity of the tracer particle as a function of the adsorption probability f at
different values of the parameter g. The probe hopping probabilities are p1 = 0.6 and p−1 = 0.4.
The solid lines give the analytical solution while the filled squares denote the results of Monte
Carlo simulations. The upper curves correspond to g = 0.8, the intermediate ones to g = 0.5 and
the lower ones to g = 0.3.
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−15 −10 −5 0 5 10 15
n

0.1

0.2

0.3

0.4

0.5

kn

Figure 3. The density profile around a stationary moving tracer particle for f = 0.1, g = 0.3 and
p = 0.98. The solid line is the plot of the analytical solution. The filled squares show the results
of Monte Carlo simulations.

0.0 0.5 1.0
f

0.0

0.5

Dtr

Figure 4. The self-diffusion coefficient of the tracer particle as a function of the adsorption
probability f . The notation and values of g are the same as for figure 2.

Note that the friction coefficient in equation (26) can be written down as the sum of two
contributions: ζ = ζcm + ζcoop. The first one, ζcm = 2τ/βσ 2(1 − ρs) is a typical mean-field
result and corresponds to a perfectly homogeneous monolayer (see the discussion following
equation (6)). The second one,

ζcoop = 8τ ∗ρs
βσ 2(1 − ρs)(f + g)

1

1 +
√

1 + 2(1 + τ ∗(1 − ρs)/τ)/(f + g)

(27)

has, however, a more complicated origin. Namely, it reflects a cooperative behaviour emerging
in the monolayer, associated with the formation of inhomogeneous density profiles (see
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figure 3)—the formation of a ‘traffic jam’ in front of the TP and a ‘depleted’ region past
the TP (for more details, see [1]). The characteristic lengths of these two regions as well as
the amplitudes K± depend on the magnitude of the TP velocity; on the other hand, the TP
velocity is itself dependent on the density profiles, by virtue of equation (5). This results
in an intricate interplay between the jamming effect of the TP and smoothing of the created
inhomogeneities by diffusive processes. Note also that cooperative behaviour becomes most
prominent in the conserved-particle-number limit [26, 27]. Setting f, g → 0, while keeping
their ratio fixed (which ensures that ρs stays constant), one notices that ζcoop becomes infinitely
large. In fact, as has been shown in references [26] and [27], in such a situation no stationary
density profiles around the TP exist; the sizes of both the ‘traffic jam’ and depleted regions
grow in proportion to the TP mean displacement Xtr(t) ∼ √

t [26, 27]. Consequently, in the
conserved-particle-number limit, ζcoop grows indefinitely in proportion to

√
t .

In order to check our analytical predictions, we have performed numerical Monte Carlo
simulations of the exact master equation of the problem, using the method of Gillespie [47].
Results of these simulations, performed at different values of the parameters f , g and p1, are
also represented in figures 2 and 3.

Consider finally the situation with E = 0, in which case the terminal velocity vanishes
and for which one expects conventional diffusive motion with a mean square displacement of
the form

X2
tr (t) = 2Dtr t (28)

whereDtr is some unknown function of the system parameters. Heuristically, we can compute
Dtr for the system under study if we assume the validity of the Einstein relation Dtr = β/ζ

between the friction coefficient and the self-diffusion coefficient Dtr of the TP [48], which
yields

Dtr = σ 2(1 − ρs)

2τ


1 +

ρsτ
∗

τ(f + g)

2

1 +
√

1 + 2(1 + τ ∗(1 − ρs)/τ)/(f + g)




−1

. (29)

Monte Carlo simulations (see figure 4) of the system evidently confirm our prediction for Dtr

given by equation (29) and, hence, confirm the validity of the Einstein relation for the system
under study. This is, of course, not unexpected, but is still a non-trivial result [48].

4. Two-dimensional adsorbed monolayer

We turn now to the case of a two-dimensional substrate—adsorption onto the surface of a
solid exposed to a vapour phase. Here, the situation gets somewhat more difficult from the
computational point of view; we now have to solve the partial difference equation problem
(17), (18) rather than the mere difference equations arising in the one-dimensional case.

The solution in two dimensions can be found in a most convenient fashion if we introduce
the generating function for the particle-density profiles, defined as

H(w1, w2) ≡
+∞∑

n1=−∞

+∞∑
n2=−∞

hn1,n2w
n1
1 w

n2
2 (30)

where hn1,n2 ≡ h(n1e1 + n2e2). Multiplying both sides of equations (17) and (18) by wn1
1 w

n2
2 ,

and performing summations over n1 and n2, we find that H(w1, w2) is given explicitly by

H(w1, w2) = −K(w1, w2){A1w
−1
1 + A−1w1 + A2(w2 + w−1

2 )− α}−1 (31)
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where

α ≡
∑
ν

Aν + 4(f + g)

and

K(w1, w2) ≡
∑
ν

Aν(w
ν/|ν|
|ν| − 1)h(eν) + ρs(A1 − A−1)(w1 − w−1

1 ). (32)

Equations (31) and (32) determine the generation function for the density profiles exactly.
Before we proceed to the inversion of H(w1, w2) with respect to the variables w1 and w2,

we note that we can access an interesting integral characteristic of the density profiles directly
using the result in equations (31) and (32). That is, as we have already remarked, the presence
of the driven TP induces an inhomogeneous density distribution in the monolayer. One can
thus pose the natural question of whether the equilibrium between adsorption and desorption
processes gets shifted due to such a perturbation, i.e. whether the equilibrium density in the
monolayer is different from that given by equation (2). The answer is trivially ‘no’ in the
case where the particle number is explicitly conserved, but in the general case with arbitrary
f and g this is not at all evident: similarly to the behaviour in a one-dimensional system,
one expects that in two dimensions the density profiles will also be asymmetric, as seen from
the stationary moving TP, and characterized by a condensed, ‘traffic-jam’-like region in front
of and a depleted region past the TP. One anticipates then that the desorption events will be
favoured in front of the TP, while the adsorption events are evidently suppressed by the excess
density. On the other hand, past the TP, desorption is diminished due to the particle depletion,
while adsorption may proceed more readily for the same reason. It is thus not at all clear
a priori whether these two effects can compensate for each other exactly, in view of a possible
asymmetry of the density profiles, as happens in the one-dimensional model (see figure 3).

For this purpose, we study the behaviour of the integral deviation - of the density from
the equilibrium value ρs ; i.e.,

- ≡
+∞∑

n1=−∞

+∞∑
n2=−∞

hn1,n2

which can be computed straightforwardly from equations (31) and (32) by setting both w1 and
w2 equal to unity. Noticing that K(w1 = 1, w2 = 1) = 0 and that A1 + A−1 + 2A2 − α =
−4(f + g), i.e. is strictly negative as soon as adsorption/desorption processes are present, we
obtain then that - is strictly equal to 0. This implies, in turn, that the perturbation of the
density distribution in the monolayer created by the driven TP does not shift the global balance
between the adsorption and desorption events.

Inversion of the generating function with respect to w1 and w2 requires quite an involved
mathematical analysis, which has been presented in detail in reference [4]. The general solution
for the density profiles reads

hn1,n2 = α−1

{∑
ν

Aνh(eν)∇−νFn1,n2 − ρs(A1 − A−1)(∇1 − ∇−1)Fn1,n2

}
(33)

with

Fn1,n2 =
(
A−1

A1

)n1/2 ∫ ∞

0
e−t In1(2α

−1
√
A1A−1t)In2(2α

−1A2t) dt (34)

where In(z) stands for the modified Bessel function. We mention that Fn1,n2 has an interesting
physical interpretation in terms of the generating function of a random walk of a single particle
(that is, in the absence of the particle environment) [44].
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Now, equations (33) and (34) give hn1,n2 as a function of the coefficients Aν that remain
to be determined. In fact, these coefficients depend themselves on the local densities in the
immediate vicinity of the tracer, i.e. on h(eν). This implies that we have to determine them
from equations (33) and (34) in a self-consistent way [4]. Some analysis (see [4]) shows that
the Aν are determined implicitly as the solution of the following system of three non-linear
matrix equations:

∀ν = {±1, 2} Aν = 1 +
4τ ∗

τ
pν

{
1 − ρs − ρs(A1 − A−1)

det C̃ν

det C̃

}
(35)

where

C̃ =

A1 ∇−1Fe1 − α A−1 ∇1Fe1 A2 ∇−2Fe1

A1 ∇−1Fe−1 A−1 ∇1Fe−1 − α A2 ∇−2Fe−1

A1 ∇−1Fe2 A−1 ∇1Fe2 A2 ∇−2Fe2 − α


 . (36)

The matrix C̃ν stands for the matrix obtained from C̃ by replacing the νth column by the
column vector F̃ :

F̃ =

 (∇1 − ∇−1)Fe1

(∇1 − ∇−1)Fe−1

(∇1 − ∇−1)Fe2


 (37)

while the local deviations h(eν) are expressed in terms of the Aν as

h(eν) = (1 − ρs) +
τ

4τ ∗pν
(1 − Aν). (38)

Lastly, the TP terminal velocity obeys

Vtr = σ

τ
(p1 − p−1)(1 − ρs)

{
1 + ρs

4τ ∗

τ

p1 det C̃1 − p−1 det C̃−1

det C̃

}−1

(39)

which represents the desired general force–velocity relation for the system under study, which
is valid for arbitrary magnitude of the external bias and arbitrary values of other system
parameters.

4.1. Asymptotical behaviour of the density profiles at large separations from the TP

The asymptotical behaviour of the density profiles at large distances from the TP follows from
the analysis of the analyticity properties of the complex function

N(z) ≡
+∞∑

n=−∞
hn,0z

n.

It has been shown in reference [4] that in front of the TP, the deviation hn,0 always decays
exponentially with the distance:

hn,0 ∼ K+
exp(−n/λ+)

n1/2
(40)

where the characteristic length λ+ obeys

λ+ = ln−1

(
1

A−1

{
α

2
− A2 +

√(
α

2
− A2

)2

− A1A−1

})
. (41)

Note that λ+ stays finite for all values of the system parameters.
In contrast, the behaviour of the density profiles at large distances past the tracer

qualitatively depends on the physical situation studied. In the general case when exchanges
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with the particle reservoir are allowed, the decay of the density profiles is still exponential with
distance:

h−n,0 ∼ K−
exp(−n/λ−)

n1/2
(42)

where

λ− = − ln−1

(
1

A−1

{
α

2
− A2 −

√(
α

2
− A2

)2

− A1A−1

})
. (43)

Note that in the general case the characteristic lengths, again similarly to the one-dimensional
case, satisfy the inequality λ− > λ+, which means that the correlations between the TP and
the particles of the monolayer are always stronger past than in front of the TP.

Such correlations can even become extremely strong in the special case where the particle
exchanges with the vapour phase are forbidden, i.e. in the conserved-particle-number limit,
which can be realized for monolayers sandwiched in a narrow gap between two solid surfaces.
In this case, we have that λ− becomes infinitely large and, in the limit n → +∞, the deviation
of the particle density from the equilibrium value ρs follows

h−n,0 = − K ′
−

n3/2

(
1 +

3

8n
+ O

(
1

n2

))
. (44)

Remarkably enough, in this case the correlations between the TP position and the particle
distribution vanish algebraically slowly with the distance! This implies, in turn, that in the
conserved-particle-number case, the mixing of the monolayer is not efficient enough to prevent
the appearance of the quasi-long-range order and the medium ‘remembers’ the passage of the
TP on a long scale of time and space, which signifies very strong memory effects.

4.2. Limit of small applied force

We turn now to the limit βE � 1, in which case the problem simplifies considerably, which
allows us to obtain explicit results for the local densities in the immediate vicinity of the TP
and, consequently, for the TP terminal velocity and its diffusivity.

In this limit, we arrive again at a Stokes-type formula of the form Vtr ∼ E/ζ , where now

ζ = 4τ

βσ 2(1 − ρs)

{
1 +

τ ∗

τ

ρs

(f + g + 1 + τ ∗(1 − ρs)/τ)(L(x)− x)

}
(45)

with

x = 1

2

1 + τ ∗(1 − ρs)/τ

f + g + 1 + τ ∗(1 − ρs)/τ
(46)

and

L(x) ≡
{∫ ∞

0
e−t

(
I0(xt)− I2(xt)

)
I0(xt) dt

}−1

. (47)

Note that we are again able to single out two physically meaningful contributions to the fric-
tion coefficient ζ . That is, the first term on the rhs of equation (45) is just the mean-field-type
result corresponding to a perfectly stirred monolayer, in which correlations between the TP
and the monolayer particles are discarded. The second term, similarly to the one-dimens-
ional case, mirrors the cooperative behaviour emerging in the monolayer and is associated
with the backflow effects. In contrast to the one-dimensional case, however, the contribution
to the overall friction coefficient stemming from the cooperative effects remains finite in the
conserved-particle-number limit.
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We also wish to remark that a qualitatively similar physical effect has been predicted
recently for a different model system involving a charged particle moving at a constant speed a
small distance above the surface of an incompressible, infinitely deep liquid. It has been shown
in references [45,46] that the interactions between the moving particle and the fluid molecules
induce an effective frictional force exerted on the particle, producing a local distortion of the
liquid interface—a bump, which travels together with the particle and effectively increases
its mass. The mass of the bump, which is analogous to the jammed region appearing in our
model, itself depends on the particle’s velocity, resulting in a non-linear coupling between the
medium-induced frictional force exerted on the particle and its velocity [45, 46].

Lastly, assuming a priori that the Einstein relation holds for the system under study, we
estimate the TP diffusion coefficient Dtr = β−1ζ−1 as

Dtr = σ 2

4τ
(1 − ρs)

{
1 − 2ρsτ ∗

τ

1

4(f + g + 1 + τ ∗(1 − ρs)/τ)L(x)− 1 + (3ρs − 1)τ ∗/τ

}
.

(48)

It now seems interesting to compare our general result in equation (48) against the classical
result of Nakazato and Kitahara [22], which describes the TP diffusion coefficient in a two-
dimensional lattice gas with conserved particle number. Setting f and g equal to zero, while
assuming that their ratio has a fixed value, f/g = ρs/(1 − ρs), we have then that

D̂tr = σ 2

4τ
(1 − ρs)

{
1 − 2ρsτ ∗

τ

1

4(1 + τ ∗(1 − ρs)/τ)L(1/2)− 1 + (3ρs − 1)τ ∗/τ

}
. (49)

Using next the equality [49]:

L(1/2) = π

4(π − 2)
(50)

we find that the right-hand side of equation (49) attains the form

D̂tr = σ 2

4τ
(1 − ρs)

{
1 − 2ρsτ ∗

τ

1 − 2/π

1 + (1 − ρs)τ ∗/τ − (1 − 2/π)(1 + (1 − 3ρs)τ ∗/τ)

}
(51)

which expression coincides exactly with the earlier result obtained in references [22] and [23]
within the framework of a different—compared to ours—analytical technique. The result in
equation (51) is known to be exact in the limits ρs � 1 and ρs ∼ 1, and serves as a very
good approximation for the self-diffusion coefficient for hard-core lattice gases of arbitrary
density [21], which supports in a way the validity of the approximation invoked in equation (9).

5. Conclusions

To conclude, we have studied analytically the intrinsic frictional properties of adsorbed
monolayers, composed of mobile hard-core particles undergoing continuous exchanges with
the vapour. Our analytical approach has been based on the master equation, describing the
time evolution of the system, which has allowed us to evaluate a system of coupled dynamical
equations for the TP velocity and a hierarchy of correlation functions. To solve these coupled
equations, we have invoked an approximate closure scheme based on the decomposition of
the third-order correlation functions into a product of pairwise correlations, which was first
introduced in reference [26] for a related model of a driven tracer particle dynamics in a
one-dimensional lattice gas with conserved particle number. Within the framework of this
approximation, we have derived a system of coupled, discrete-space equations describing
evolution of the density profiles in the adsorbed monolayer, as seen from the moving tracer,
and its velocity Vtr . We have shown that the density profile around the tracer is strongly
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inhomogeneous: the local density of the adsorbed particles in front of the tracer is higher than
the average and approaches the average value as an exponential function of the distance from
the tracer. On the other hand, past the tracer the local density is always lower than the average
and, depending on whether the number of particles is explicitly conserved or not, the local
density past the tracer may tend to the average value either as an exponential or even as an
algebraic function of the distance. The latter reveals especially strong memory effects and
strong correlations between the particle distribution in the environment and the carrier position.
Next, we derived a general force–velocity relation, which defines the terminal velocity of the
tracer particle for arbitrary applied fields and arbitrary values of other system parameters. We
demonstrated next that in the limit of a vanishingly small external bias this relation attains
the simple, but physically meaningful form of the Stokes formula, which signifies that in this
limit the frictional force exerted on the tracer by the adsorbed monolayer particles is viscous.
The corresponding friction coefficient has also been explicitly determined. In addition, we
estimated the self-diffusion coefficient of the tracer in the absence of the field and showed that
it reduces to the well-known result of references [22] and [23] in the limit where the particle
number is conserved.
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